
Academic Editor: Michael Fowler

Received: 8 August 2025

Revised: 26 September 2025

Accepted: 28 September 2025

Published: 1 October 2025

Citation: Gasteratos, G.; Karydis, I.

Efficient Drone Data Collection in

WSNs: ILP and mTSP Integration with

Quality Assessment. World Electr. Veh.

J. 2025, 16, 560. https://doi.org/

10.3390/wevj16100560

Copyright: © 2025 by the authors.

Published by MDPI on behalf of the

World Electric Vehicle Association.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Efficient Drone Data Collection in WSNs: ILP and mTSP
Integration with Quality Assessment †

Gregory Gasteratos *,‡ and Ioannis Karydis ‡

Department of Informatics, Ionian University, 49132 Kerkyra, Greece; karydis@ionio.gr
* Correspondence: ggasteratos@ionio.gr
† This paper is an extended version of our paper published in the 3rd Asia-Europe Conference on Applied

Information Technology (AETECH 2025) titled “Optimized Drone Data Collection in WSNs: An ILP and
mTSP Framework”.

‡ These authors contributed equally to this work.

Abstract

The proliferation of wireless sensor networks in remote and inaccessible areas demands
efficient data collection approaches that minimize energy consumption while ensuring
comprehensive coverage. Traditional data retrieval methods face significant challenges
when sensors are sparsely distributed across extensive areas, particularly in scenarios where
direct sensor access is impractical due to terrain constraints or operational limitations. This
research addresses these challenges through a novel hybrid optimization framework that
combines integer linear programming (ILP) with multiple traveling salesperson problem
(mTSP) algorithms for drone-based data collection in wireless sensor networks (WSNs). The
methodology employs a two-phase approach, where ILP optimally determines strategic
access point locations for sensor clustering based on communication capabilities, followed
by mTSP optimization to generate efficient inter-AP flight trajectories rather than individ-
ual sensor visits. Comprehensive simulations across diverse network configurations and
drone quantities demonstrate consistent performance improvements, with travel distance
reductions reaching 32% compared to conventional mTSP implementations. Comparative
evaluation against established clustering algorithms including Voronoi, DBSCAN, Con-
strained K-Means, Graph-Based clustering, and Greedy Circle Packing confirms that ILP
consistently achieves optimal access point allocation while maintaining superior routing
efficiency. Additionally, a novel quality assessment metric quantifies sensor grouping effec-
tiveness, revealing that ILP-based clustering advantages become increasingly pronounced
with higher sensor densities, providing substantial operational benefits for large-scale
wireless sensor network deployments.

Keywords: path planning optimization; drone path planning; ILP; mTSP; access points

1. Introduction
Gathering data effectively from extensive networks of sensors presents a significant

challenge, especially in places where setting up conventional systems is just not feasible.
Wireless sensor networks (WSNs) [1] are being used more and more in diverse fields like
environmental monitoring [2], precision agriculture [3], and disaster response [4]. A core
difficulty in these setups is extracting the data efficiently, particularly when the sensors
themselves cannot move around, have limited communication reach, and run on tight
power resources. As highlighted by Balbal et al. [5], smart ways of collecting data can really
make a difference in how well the whole network performs.
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Unmanned Aerial Vehicles (UAVs) or drones have emerged as a promising solution
for data collection in WSNs, particularly in large, sparsely populated areas. However,
optimizing both the locations for data collection, known as access points (APs), and the
routing of multiple drones presents significant challenges that existing approaches have
not adequately addressed.

Recent research efforts have explored various optimization strategies for UAV-assisted
data collection, yet critical methodological gaps remain. Bilevel optimization approaches,
such as those employing improved dandelion algorithms combined with single Traveling
Salesman Problem (TSP) [6] formulations, rely on heuristic methods that cannot guarantee
optimal solutions for multi-drone scenarios [7]. Similarly, energy-efficient clustering strate-
gies developed for traditional WSN applications focus primarily on ground-based energy
distribution without considering the unique constraints of aerial data collection, including
communication range limitations, drone energy consumption patterns, and multi-agent
coordination requirements [8,9]. Specialized applications such as landslide monitoring with
drone-assisted WSNs demonstrate domain-specific solutions but lack the generalized opti-
mization framework needed for diverse deployment scenarios [10]. While these approaches
demonstrate effectiveness in their specific domains, none combine the mathematical opti-
mality guarantees of integer linear programming for strategic access point placement with
the multi-agent efficiency of mTSP formulation for coordinated drone routing.

This paper extends our previous work [11] by exploring the deployment of multiple
UAVs for data collection tasks using a hybrid approach that combines integer linear pro-
gramming (ILP) [12] and the multiple Traveling Salesman Problem (mTSP) [13,14]. Building
upon the foundational two-phase optimization strategy, this extended version introduces a
comprehensive quality assessment framework for evaluating access point configurations
and their operational impact on data collection efficiency. The aim is to minimize total
energy consumption across all UAVs while ensuring complete sensor node coverage and
optimal operational effectiveness.

Motivation and Contribution

The integration of unmanned aerial vehicles for the collection of data from ground
sensors is a rapidly evolving field, particularly with respect to operational efficiency and re-
source optimization. The challenges of aerial data collection require innovative approaches
that can address both coverage and routing problems simultaneously.

To this end, the contributions of this work can be summarized as follows:

• A Novel Two-Phase Optimization Framework. This work introduces a novel two-
phase optimization framework to address the sensor data collection problem. The first
phase uses an Integer Linear Program (ILP) to determine the minimum number of
access points needed to cover all sensors, which significantly reduces the complexity
of the subsequent routing problem. The second phase models the routing as a Multi-
Traveling Salesman Problem (mTSP) to efficiently plan the drone paths to visit these
access points, rather than individual sensors, minimizing overall travel distance.

• Operational Impact Assessment. The research develops a comprehensive quality
assessment framework to evaluate the effectiveness of generated access point con-
figurations. This framework uses metrics like compactness, maximum distance, and
consistency to analyze operational impact, including predicted hover times and com-
munication efficiency. Additionally, the work introduces a post-processing technique
to refine the sensor-to-access point assignments, which further improves operational
effectiveness while maintaining the minimal number of access points achieved in the
initial ILP phase.
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• Extensive Experimental Validation. The study performs extensive experimental valida-
tion to demonstrate the effectiveness of the proposed approach. The research conducts
a comparative analysis against six established clustering algorithms including Voronoi
tessellation, DBSCAN, Constrained K-Means, Graph-Based clustering, and Greedy
Circle Packing, where the ILP consistently achieves the optimal access point minimiza-
tion. Furthermore, simulated experiments across various network configurations and
drone counts demonstrate significant performance advantages, with travel distance
reductions of up to 32% compared to direct sensor visitation methods.

This approach not only minimizes the number of APs required but also optimizes
drone paths, leading to significant improvements in energy efficiency and scalability. The
primary benefit of separating the problem into two phases is the reduction in computational
complexity. The combined problem of determining optimal AP locations and drone paths
simultaneously would be NP-hard and practically unsolvable for large networks.

The ILP approach first identifies the minimum number of access point locations needed
to provide complete sensor coverage, effectively grouping sensors into clusters around
these optimal positions. This reduces the subsequent mTSP problem complexity since
drones only need to visit APs rather than all individual sensors.

The remainder of this paper unfolds as follows. Section 2 examines relevant contribu-
tions, covering the foundational work of mTSP formulations and ILP techniques, alongside
recent developments in hybrid approaches that merge clustering mechanisms with mobile
collection strategies. Section 3 elaborates on our proposed methodology, detailing the
two-phase optimization process where ILP determines optimal access point placement
followed by mTSP route planning. Section 4 encompasses our experimental methodology,
describing the test environment, presenting the various network configurations examined,
and analyzing the performance outcomes through comparative distance metrics, clustering
efficiency indicators, and comprehensive quality assessment frameworks. This section
also introduces our post-processing enhancement technique and provides extensive com-
parative analysis against established clustering algorithms including Voronoi tessellation,
DBSCAN, and Graph-Based approaches. The paper concludes in Section 5 with a synthesis
of our findings and suggestions for extending this research in emerging Internet of Things
(IoT) [15] contexts.

2. Background and Related Work
2.1. WSN Data Collection Approaches

Research in WSN data collection has evolved significantly over the past two
decades [16], following several distinct but interconnected paths focusing on mobile collec-
tion, clustering approaches, and integrated methodologies.

2.1.1. Mobile Data Collectors (MDCs)

The concept of mobile elements for WSN data collection emerged in 2003 when Shah
et al. introduced “Data MULEs” [17]. This seminal work established a new paradigm for
employing mobile nodes to gather information from stationary sensors, addressing the
power constraints inherent in long-range transmissions.

Several researchers subsequently expanded this foundational work. Gatzianas and
Georgiadis [18] developed sophisticated linear programming models for resource allocation
in WSNs with mobile access points. Their work emphasized network lifespan maximization
while accounting for collector movement patterns. Chakrabarti et al. [19] investigated
fundamental trade-offs between energy consumption and data latency in mobile collection
scenarios. Their study established practical boundaries that continue to influence system
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architecture decisions. These pioneering efforts collectively shaped our understanding of
mobile data collection in wireless sensor environments.

Recent work has also explored bilevel optimization frameworks for UAV-assisted data
collection. Han et al. [7] proposed a bilevel optimization approach where an improved
dandelion algorithm optimizes UAV deployment at the upper level, while an iterated
greedy algorithm addresses single TSP at the lower level. While this approach demonstrates
effectiveness for single-UAV scenarios, it relies on heuristic methods that lack mathematical
optimality guarantees and does not address the multi-drone coordination requirements
inherent in large-scale WSN deployments. Later work by the same research group extended
this to multi-UAV scenarios for large-scale mobile edge computing applications [20], though
still relying on approximation algorithms rather than optimal solutions for the access point
placement phase.

Specialized applications have also demonstrated the effectiveness of UAV-assisted
data collection in specific domains. Karunanithy et al. [10] developed an energy-efficient
data routing protocol specifically for landslide-prone areas, employing drones to collect
data while minimizing human risk in hazardous environments. Their approach, while
effective for disaster monitoring scenarios, focuses on reliability and safety rather than the
general optimization of access point placement and routing efficiency.

Our ILP-based approach fundamentally differs by providing mathematical optimality
for the critical access point placement phase while seamlessly integrating with mTSP for
multi-drone coordination, offering a generalized framework that can adapt to diverse
deployment scenarios.

2.1.2. AP/Cluster Head Selection

The selection of optimal cluster heads or access points in wireless sensor networks
remains a crucial research challenge that has attracted considerable attention. In [21],
Heinzelman et al. developed the LEACH (Low-Energy Adaptive Clustering Hierarchy)
protocol, now recognized as a pioneering and influential protocol for WSN clustering. The
innovation of LEACH lies in its approach to spreading energy consumption across the
network through periodic rotation of cluster head responsibilities among nodes.

Building on the LEACH foundation, Younis and Fahmy [22] introduced HEED (Hybrid
Energy-Efficient Distributed clustering), which advanced the clustering methodology by
incorporating both remaining energy levels and communication costs as determining
factors in the cluster head selection process. This strategy notably extended network
operational time compared to previous methods. Gupta and Younis [23] specifically tackled
the difficult issue of fault-tolerant clustering, developing techniques to bounce back from
cluster head failures and sustain network connections despite losing nodes.

Recent advances in energy-efficient clustering have further developed these founda-
tional approaches. Balanced energy-efficient clustering strategies have focused on opti-
mizing energy distribution among ground-based sensor nodes through sophisticated load
balancing mechanisms [9]. Advanced methods such as machine learning-based clustering
protocols have demonstrated improved energy efficiency by integrating fuzzy c-means
algorithms with optimized routing strategies for IoT-enabled WSN environments [8].

However, these methods are designed for traditional multi-hop routing scenarios and
do not consider the unique constraints of aerial data collection, such as communication
range limitations, drone energy consumption patterns, and flight trajectory optimization.
While these clustering strategies excel in their intended ground-based applications, they
lack integration with aerial vehicle coordination and multi-drone routing optimization that
our approach provides.
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2.1.3. Combined Approaches

Various researchers have investigated methods combining clustering elements with
mobile collection, resembling the two-phase strategy under examination. One of the main
differences between our method and previous approaches lies in how APs are conceptu-
alized and used. Typically, related work treats APs—or cluster heads—as logical nodes
within the network that gather sensor data and forward it using multi-hop communication,
without the need for physical access. Our approach, however, takes a different route by
treating APs as real-world locations that drones must physically visit. This redefinition
turns APs from passive communication hubs into active data collection points, directly
tying their placement to the drone’s travel route. This role of APs—as both clustering
anchors and compulsory drone checkpoints—marks a significant shift from established
practices and is central to the performance gains demonstrated in our experiments. Gand-
ham et al. [24] presented an early dual-stage approach employing ILP for determining base
station locations followed by route enhancement. Their work demonstrated the benefits of
breaking down complicated problems into more manageable components.

Roberti and Ruthmair [25] created a mixed-integer linear program (MILP) framework
that synchronizes truck and drone logistics, leveraging the speed of drones alongside the
capacity of trucks. Their methodology reflects a broader trend within the literature that
recognizes the importance of co-deployment strategies involving different vehicle types, as
it serves to optimize delivery processes in various operational settings. By aligning routing
plans through ILP techniques [26], significant efficiency enhancements can be achieved,
making it feasible for drones to cover greater distances with optimized energy usage.

Similarly, Meskar and Ahmadi [27] in their study integrated a realistic, load-dependent
energy consumption function into a mixed-integer linear programming framework, al-
lowing precise calculation of drone operational costs across various flight phases. By
comparing different routing strategies and addressing demand uncertainty, the researchers
therein provide a comprehensive method for determining optimal drone launching centers
and delivery routes, demonstrating the significant advantages of an integrated approach
over traditional sequential planning methods.

Moreover, the integration of advanced algorithms and computational techniques
within the ILP framework can further enhance its applicability in dynamic environments.
For instance, adaptive algorithms that adjust to changing environmental conditions can be
developed to optimize AP placement and routing strategies in real-time [28].

2.1.4. Specific Work on ILP + mTSP for WSNs

Several research teams have examined the particular combination of ILP for selecting
APs followed by mTSP for planning collection paths. Castaño et al. [29] put forward a
comparable approach explicitly developed for urban monitoring using IoT devices.Their
methodology employs ILP to determine the most effective gateway locations before ad-
dressing the mTSP for vehicles collecting data, demonstrating notable success in dense city
environments.

Gu et al. [30] introduced a two-phase optimization solution for industrial WSNs,
utilizing mixed-integer programming for relaying nodes’ placement followed by route
enhancements. Their research addressed the particular constraints found in industrial
settings, including interference and reliability demands.

Cornejo-Acosta et al. [31] presented innovative methods for solving routing challenges
across various mTSP variants by developing compact mathematical models with reduced
computational complexity. Their proposal of integer programming formulations offers
flexible solutions for real-world routing scenarios, demonstrating significant theoretical
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and practical advantages in handling multiple salespersons’ routes without traditional
depot constraints.

2.2. Limitations of Existing Approaches

While existing research has made significant contributions to WSN data collection
optimization, several critical shortcomings remain that directly motivate this work. Current
approaches typically address access point placement or routing optimization in isolation
but rarely both systematically, leading to suboptimal overall system performance.

Recent bilevel optimization methods, while representing advancement in UAV tra-
jectory planning, suffer from fundamental limitations by relying entirely on heuristic
algorithms at both optimization levels, providing no mathematical optimality guarantees
for the critical access point placement phase. These approaches treat deployment and trajec-
tory as separate optimization problems, missing opportunities for integrated optimization
that our ILP + mTSP framework captures.

Similarly, advanced energy-efficient clustering strategies focus primarily on ground-
based energy distribution without considering aerial collection constraints. Even sophis-
ticated machine learning-based clustering protocols optimize for traditional multi-hop
routing scenarios but fail to account for the communication range limitations, drone en-
ergy consumption patterns, and flight trajectory requirements inherent in UAV-assisted
data collection.

Traditional clustering algorithms often produce suboptimal access point configura-
tions, either generating excessive numbers of cluster heads that reduce routing efficiency or
creating poorly distributed clusters that increase communication overhead and hover times
for data collection drones. Moreover, existing methodologies lack comprehensive quality
metrics that evaluate the operational efficiency of access point configurations, with most
approaches focusing solely on coverage constraints without considering the practical impli-
cations of sensor distribution patterns within each cluster on drone energy consumption
and collection times.

A fundamental gap exists between theoretical approaches and operational realities,
as previous work treats access points as logical communication hubs rather than physical
locations that drones must visit. This abstraction overlooks the critical relationship between
cluster geometry and actual data collection efficiency, particularly how sensor dispersion
within coverage areas affects communication quality and required hover times. Addition-
ally, while some hybrid approaches show promise in small-scale scenarios, they fail to
demonstrate consistent performance advantages as network size increases, limiting their
applicability to large-scale environmental monitoring or precision agriculture deployments
where the benefits of optimization become most critical.

These limitations highlight the need for a systematic two-phase approach that guar-
antees optimal access point minimization through ILP while providing comprehensive
quality assessment frameworks to evaluate real-world operational efficiency. The pro-
posed methodology addresses these gaps by integrating mathematical optimality with
practical operational considerations, providing both theoretical guarantees and measurable
performance improvements for drone-based WSN data collection systems.

2.3. Benefits of Using Integer Linear Programming

ILP is particularly effective for problems involving discrete variables, such as the
placement of APs. Its primary benefit is yielding optimal solutions for complex combinato-
rial problems [32]. By formulating AP placement as an ILP, each sensor can be covered by
exactly one AP while minimizing the total number of APs used [32].
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ILP allows for the exploration of multiple objectives, such as minimizing the number
of APs while maximizing coverage and connectivity. This multi-objective optimization
is particularly relevant in scenarios where environmental conditions may vary, neces-
sitating adaptive deployment strategies [33]. The flexibility of ILP in accommodating
different constraints and objectives makes it a powerful tool for network design and
optimization [34,35].

The findings of Kara and Bektas [36] suggest that solving the mTSP directly using
their ILP formulations is more efficient than transforming it into a standard TSP. Similarly,
Wang et al. [37] provide a comprehensive framework for aerial data collection in large-
scale wireless sensor networks, supporting the notion that effective AP placement leads to
significant improvements in data collection efficiency.

As researchers continue to bridge ILP with drone routing complexities, it becomes
evident that these methodologies present a promising avenue for enhancing logistical
efficiencies across varied applications, from disaster relief to commercial deliveries. In
summary, the integration of integer linear programming within the paradigms of access
point placement and Multi-Traveling Salesman Problem analysis for drone routing reveals
a powerful capability for enhancing operational efficiencies.

3. Proposed Method
As mentioned previously, herein a two-phase optimization strategy is proposed as

depicted in Figure 1.

ILP

Phase 1: ILP for AP definition 

Phase 2: mTSP for drone path planning

Access Point

Sensor Station

Launchpad

Figure 1. Two-phase optimization strategy.

3.1. Phase 1: ILP for APs’ Placement

This phase entails the modeling of the access point placement challenge as an integer
linear programming problem. This approach enables the efficient clustering of sensors
based on their transmission capabilities.
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To enhance the legibility of the work, an example scenario is employed for presentation
purposes: as illustrated in Figure 2, the initial configuration of the scenario consists of 20
static sensor stations (S1 . . . S20) distributed across a field. These stations continuously
collect data that must be retrieved. At the designated launchpad (H), three drones are
stationed for deployment to collect the data from the distributed sensors.

S13

S6
S8

S2

S20

S14
S7

S10S1

S4
S19S11

S9 S5

S18
S12S15

S16
S17 S3

Figure 2. A random placement of sensor stations in a field.

By applying the ILP algorithm, stations have been grouped according to their data
transmission range capabilities. The results of this optimization are depicted in Figure 3,
where distinct clusters have been formed. These newly established groups, designated as
access points, are clearly demarcated with circular boundaries in the illustration, wherein
the center of the boundary is identified by the ILP and the radius is 100 units.

S13

S6
S8

S2

S20

S14
S7

S10S1

S4
S19S11

S9 S5

S18
S12S15

S16
S17 S3

Figure 3. Application of ILP for APs’ definitions.

These optimized access points now serve as consolidated collection locations, signif-
icantly streamlining the flight paths required for the drones to retrieve all sensors’ data.
Rather than visiting each individual sensor, the drones now need only to visit these strate-
gically positioned access points.

The implementation of defining the APs using ILP is shown in Algorithm 1 where the
GetAccessPointCoordinates is the name of the method returning the list of the AP locations.
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Algorithm 1 GetAccessPointCoordinates.

Require: List of sensor coordinates S = {(x1, y1), (x2, y2), . . . , (xn, yn)}, coverage radius r
Ensure: List of selected access point coordinates A that minimize AP count while ensuring

full sensor coverage
1: Initialize ILP solver using OR-Tools SCIP backend
2: Define candidate AP locations C ← S ▷ Sensors can serve as potential AP locations
3: Initialize decision variables:
4: for ap ∈ C do
5: Define binary variable isAP[ap] ∈ {0, 1} ▷ 1 if AP is placed at location ap, 0

otherwise
6: end for
7: Initialize coverage variables:
8: for s ∈ S do
9: for ap ∈ C do

10: if distance(s, ap) ≤ r then ▷ Check if sensor s is within coverage of AP ap
11: Define binary variable covers[s, ap] ∈ {0, 1} ▷ 1 if AP ap covers sensor s, 0

otherwise
12: end if
13: end for
14: end for
15: Add coverage constraints: ▷ Each sensor must be covered by exactly one AP
16: for s ∈ S do
17: Add constraint: ∑ap such that (s,ap)∈covers covers[s, ap] = 1
18: end for
19: Add activation constraints: ▷ If AP covers a sensor, that AP must be active
20: for (s, ap) ∈ covers do
21: Add constraint: covers[s, ap] ≤ isAP[ap]
22: end for
23: Set objective function: minimize ∑ap∈C isAP[ap] ▷ Minimize total number of active APs
24: Solve ILP model
25: Extract solution:
26: A ← ∅ ▷ Initialize empty result set
27: if solution status is OPTIMAL then
28: for ap ∈ C do
29: if isAP[ap] = 1 then ▷ If AP is selected in optimal solution
30: Add ap to A ▷ Include in final AP set
31: end if
32: end for
33: else
34: return INFEASIBLE or ERROR ▷ Handle cases where no solution exists
35: end if
36: return A ▷ Return optimal AP locations

The ILP formulation addresses the access point placement problem as a combinatorial
optimization challenge with the following key components:

Decision Variables:

• isAP[ap]: Binary variable indicating whether an access point is placed at candidate
location ap

• covers[s, ap]: Binary variable indicating whether access point ap provides coverage to
sensor s

Constraints:

• Coverage constraint(line 16): Ensures each sensor is covered by exactly one access point,
preventing both under-coverage and redundant coverage

• Activation constraint(line 20): Enforces that if an access point covers any sensor, that
access point must be activated (selected in the solution)
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Objective Function:The objective minimizes the total number of access points while
satisfying all coverage requirements, achieving the optimal clustering solution that reduces
subsequent drone routing complexity.

Computational Considerations:The ILP approach guarantees mathematical optimality
for the access point placement phase, providing the foundation for efficient mTSP routing
in Phase 2. The computational complexity is manageable for typical WSN deployment
scenarios with hundreds of sensors.

Algorithm Output Validation:The algorithm returns the minimal set of access point lo-
cations that ensure complete sensor coverage. Each returned coordinate in set A represents
an optimal access point location where drones will collect data from all sensors within the
coverage radius r. The optimality guarantee distinguishes this approach from heuristic
clustering methods that may produce suboptimal access point configurations.

3.2. Phase 2: mTSP for Drone Path Planning

The second phase leverages the mTSP methodology, applying it to the newly es-
tablished access points (AP1 . . . AP12) from Figure 3 rather than addressing each sensor
individually. Each drone receives a specific mission assignment consisting of a predefined
route with designated access points and their associated sensor identifications. Each drone
is exclusively responsible for collecting data from sensors assigned to its designated access
points, ensuring systematic coverage without overlap or interference. Even if a drone
operates in proximity to sensors assigned to other drones’ access points, it only collects
data from sensors within its own mission parameters. This approach maintains operational
clarity, prevents data collection conflicts, and ensures that each sensor’s data is collected
exactly once according to the optimized assignment.

With the same deployment plan as stated before, i.e., three drones, Figure 4 demon-
strates the optimized results, with the drones covering a total distance of 4805 units. Drone
1 flies the orange route (H, AP12, AP2, AP6, AP11, H) covering 1767 units. Drone 2 flies the
blue route (H, AP9, AP4, AP1, AP8, H) covering 1571 units, and drone 3 flies the green route
(H, AP7, AP5, AP10, AP3, H) covering 1467 units.

AP9
AP4

AP1 AP8

AP12

AP2

AP6

AP11

AP7

AP5

AP10
AP3

Figure 4. Apply mTSP on the APs. Different colored lines denote planned drone trajectories.

To evaluate the effectiveness of this strategic approach, a parallel analysis was con-
ducted, applying mTSP directly to the original configuration illustrated in Figure 2, i.e.,
before the application of the ILP and the formation of the clusters/APs. Using identical
parameters—the same number drones and identical launch location—Figure 5 displays
these results, showing a total required travel distance of 5054 units. Drone 1 flies the
orange route (H, S13, S6, S8, S2, S20, S14, S7, H) covering 1894 units. Drone 2 flies the blue
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route (H, S10, S1, S4, S19, S11, S9, S5, H) covering 1770 units and drone 3 flies the green route
(H, S18, S12, S15, S16, S17, S3, H) covering 1390 units.

S13

S6
S8

S2

S20

S14
S7

S10S1

S4
S19S11

S9 S5

S18
S12S15

S16
S17 S3

Figure 5. Application of mTSP on the stations without the use of ILP/APs. Different colored lines
denote planned drone trajectories.

A comparative examination of both approaches reveals significant operational benefits.
The optimized approach in Figure 4 requires navigation to only 12 collection points, whereas
the conventional approach in Figure 5 necessitates visits to all 20 original locations. This
strategic consolidation translates to considerable reduction on the required travel distance
when implementing the access point methodology. This efficiency improvement on travel
distance units demonstrates the tangible operational advantages of the clustered routing
strategy through intermediate aggregation points.

3.3. Benefits of the Two-Phase Approach

After determining optimal AP locations through ILP in the first phase, the second
phase uses the mTSP framework to optimize drone routing for data collection. This
approach treats the previously determined APs as nodes in a graph, with drones functioning
as multiple salesmen tasked with visiting these nodes. The objective is to reduce the overall
journey length or duration while guaranteeing that each AP receives exactly one visit from
exactly one drone.

By formulating the problem this way, efficient flight paths for multiple drones can be
generated, balancing workload across the fleet while minimizing energy consumption.

This methodology scales well with network expansion. When new sensor stations
are introduced, the number of required APs may not increase proportionally, particularly
if these stations are positioned within the communication range of existing APs. The
mTSP framework can readily accommodate additional APs as it will be shown in the
experimentation section herein.

In addition, a significant advantage of this decoupled two-phase approach is its adapt-
ability to dynamic field conditions. Modifications in station deployment or operational
status can be addressed by reconfiguring APs’ placements while maintaining existing drone
paths where feasible. Conversely, changes in drone fleet composition or availability can be
managed by adjusting routing solutions without necessitating alterations to the established
AP infrastructure.

Finally, this sequential approach significantly reduces computational complexity com-
pared to attempting to optimize both APs’ placement and drone routing simultaneously.
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3.4. Data Collection Efficiency at Access Points

The optimization benefits demonstrated thus far focus exclusively on inter-AP move-
ment without considering the operational efficiency of data collection at each access point.
This represents a significant analytical gap, as the time and energy required for hovering
and data transmission can vary dramatically based on how stations are spatially distributed
within the coverage area of each AP.

When a drone visits an individual station station directly, it hovers directly above the
station with optimal signal strength and minimal communication time. However, when vis-
iting an access point, the drone positions itself at the AP center and must communicate with
all assigned stations within the coverage radius. Stations located near the coverage edge
experience weaker signal strength, higher packet loss rates, and require longer transmission
times compared to stations clustered near the AP center.

In other words, the distribution pattern of stations within each AP coverage area
directly impacts operational efficiency. A drone requires significantly more time collecting
data from an AP where stations are scattered across the coverage perimeter compared to
one where stations cluster near the center position.

The proposed optimization herein, up to this point, addresses only the travel com-
ponent while ignoring the potentially significant energy costs associated with hovering
and communication phases. This observation highlights the necessity of developing met-
rics that evaluate AP quality based on station distribution characteristics and conduct
further experiments.

3.4.1. Access Point Quality Metrics

The evaluation of access point data collection efficiency requires a comprehensive as-
sessment framework that captures how sensor spatial distribution patterns affect operational
performance. While the ILP optimization successfully minimizes access point count and
ensures coverage, it does not account for the quality of sensor clustering within each coverage
area, which directly impacts the communication efficiency and hover time requirements.

To address this gap, we develop a composite quality assessment methodology that
integrates multiple geometric and operational characteristics into unified metrics. The
mathematical framework utilizes the notation defined below defining all variables used in
Equations (1) through (4).

Building upon the mathematical components defined in Table 1, a composite quality
index is proposed, as defined in Equation (1), that integrates multiple geometric and
operational characteristics into a unified assessment technique. The composite AP quality
score combines three fundamental aspects of station distribution within each access point’s
coverage area:

QAP = max
(
0, 1− (w1 ·Qcompactness + w2 ·Qmaxdist + w3 ·Qconsistency)

)
(1)

where w1 = 0.4, w2 = 0.3, and w3 = 0.3 represent the relative importance weights for
each quality dimension. This formulation treats each component as a penalty factor, where
higher component values indicate poorer AP configuration, and the overall quality score
approaches 1.0 for optimal configurations. The parametric weighting approach enables
adaptive reconfiguration for unforeseen scenarios where operational priorities or mission
constraints deviate from standard assumptions.
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Table 1. Mathematical notation for access point quality metrics.

Symbol Type Definition

QAP Quality score Composite Access Point quality score (0-1 range)

w1, w2, w3 Weights Relative importance weights (0.4, 0.3, 0.3)

Qcompactness Component Compactness penalty factor based on station clustering

Qmaxdist Component Maximum distance penalty factor

Qconsistency Component Consistency penalty factor based on distribution uni-
formity

σdistance Distance (meters) Standard deviation of station distances from AP center

rcoverage Distance (meters) Coverage radius for access point

dmax Distance (meters) Maximum distance from AP center to any assigned
station

c Coordinate Access Point center coordinate

si Coordinate Station i coordinate

Compactness Component

The compactness component Qcompactness, as defined in Equation (2), evaluates how
efficiently stations utilize the available coverage area:

Qcompactness =
d̄

rcoverage
(2)

where d̄ represents the average distance from the AP center to all assigned stations, and
rcoverage denotes the maximum coverage radius. Values approaching 0 indicate stations
clustered near the AP center, enabling optimal communication efficiency, while values near
1.0 suggest stations distributed at the coverage perimeter, requiring maximum transmission
power and extended collection times.

Maximum Distance Component

The maximum distance component Qmaxdist, as defined in Equation (3), captures the
worst-case communication scenario within each AP:

Qmaxdist =
dmax

rcoverage
(3)

where dmax = maxi(∥c− si∥) represents the maximum distance from AP center c to any
assigned station si. Low values indicate all stations remain within close proximity to the
AP center, while high values approaching 1.0 signal that some stations operate at the
communication range limit, potentially requiring additional transmission attempts and
extended hover times.

Consistency Component

The consistency component Qconsistency, as defined in Equation (4), quantifies the
uniformity of sensor distribution around the AP center:

Qconsistency =
σdistance
rcoverage

(4)

where σdistance represents the standard deviation of distances from the AP center to assigned
stations. Values near 0 indicate uniform station clustering with predictable communication
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requirements, while higher values suggest irregular distribution patterns that complicate
mission planning and introduce operational uncertainty. The normalization by coverage
radius ensures consistency measures remain comparable across different AP configurations
and deployment scenarios.

This composite metric combines all quality factors into a single score where values
approaching 1.0 indicate optimal AP configurations for efficient data collection.

Table 2 summarizes how the quality score of an access point (AP) configuration affects
the data collection efficiency and required hover time. Higher scores (closer to 1.0) indicate
excellent performance with no additional hover time needed. As the score decreases, col-
lection efficiency degrades, and additional hover time is required to compensate—ranging
from 10 to 20% for good scores to over 40% for poor ones. APs with poor quality metrics
may experience longer hover times compared to well-clustered configurations. In large
networks where our method achieves the greatest travel distance reductions, this hovering
penalty could offset some of the energy savings from optimized routing.

Table 2. Impact of quality score on collection efficiency and hover time.

Quality Score Collection Efficiency Hover Time Impact

0.8–1.0 Excellent No extra time
0.6–0.8 Good +10–20% hover time
0.4–0.6 Fair +20–40% hover time
0.0–0.4 Poor +40% + hover time

The weighted combination of these three components provides a comprehensive
assessment of AP quality, with the compactness factor receiving the primary emphasis
(w1 = 0.4) due to its direct impact on communication efficiency, while the maximum
distance and consistency factors contribute equally (w2 = w3 = 0.3) to capture the reliability
and predictability aspects of data collection operations.

3.4.2. Operational Impact-Based Quality Assessment

Building upon the individual AP quality metrics described in the previous section,
practical drone deployment scenarios require a more comprehensive evaluation technique
that captures the real-world operational consequences of AP placement decisions. While the
standard deviation distance, maximum distance, and compactness ratio provide valuable
insights into station clustering characteristics, they do not directly translate into actionable
information about mission duration, energy consumption, or operational reliability.

The operational impact-based approach shifts focus from geometric properties to
mission-critical performance indicators. This methodology recognizes that drone operators
primarily concern themselves with total mission time and operational predictability rather
than abstract clustering metrics. The mathematical formulation employs the notation
presented in Table 3 defining all variables used in Equations (5) through (10).

Using the mathematical components defined in Table 3, the assessment methodology
quantifies how AP quality variations translate into tangible operational outcomes, such as
extended hover times, increased communication overhead, and reduced mission reliability.

The operational assessment methodology evaluates each access point using a com-
prehensive technique that incorporates both quality-based time penalties and distance-
dependent communication efficiency degradation. For access points exhibiting quality
scores below the operational threshold τgood = 0.8, the system calculates additional hover
time requirements using two complementary approaches. The quality-based penalty
mechanism applies a linear relationship between quality degradation and time overhead,
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while the distance-based penalty incorporates realistic communication physics to estimate
retransmission and positioning requirements.

Table 3. Mathematical notation for operational impact assessment.

Symbol Type Definition

textra,i Time (seconds) Total operational extra time for access point i

tquality,i Time (seconds) Quality-based time penalty for AP i

tdistance,i Time (seconds) Distance-based time penalty for AP i

τgood Threshold Quality threshold for good performance (0.8) be-
low which penalties are applied

qi Quality score represents the normalized AP Quality Score for
access point i (from Equation (1))

ni Integer Number of stations assigned to access point i

tstation Time (seconds) Baseline optimal collection time per station (3 s)

ηcomm,i Efficiency factor Communication efficiency factor for AP i (0.5–1.0)

ηmin Parameter Minimum communication efficiency (0.5)

α Parameter Degradation rate parameter (1.5)

dpenalty,i Penalty factor Distance penalty for AP i (normalized, 0–1)

dratio,i Ratio Normalized average distance ratio for AP i

d̄i Distance (meters) Average distance from AP i to its assigned sensors

doptimal Threshold Optimal distance ratio threshold (0.3)

The mathematical formulation for operational extra time calculation combines these
factors as follows in Equation (5), taking the maximum to capture the dominant limiting factor:

textra,i = max(tquality,i, tdistance,i) (5)

where the quality-based time penalty is expressed in Equation (6) as

tquality,i =

(τgood − qi) · ni · tstation, if qi < τgood

0, otherwise
(6)

where the variables are defined in Table 3: qi represents the AP quality score (QAP) for AP i
as calculated in Section 3.4.1 using Equation (1), ni denotes the number of stations assigned
to AP i, and tstation = 3sec represents the baseline collection time per station under optimal
conditions.

The distance-based penalty, as defined in Equation (7), incorporates communication
efficiency degradation. This distance-based penalty accounts for communication degrada-
tion as sensors operate farther from their assigned access point center, requiring additional
time for reliable data transmission:

tdistance,i =
ni · tstation

ηcomm,i
− ni · tstation (7)
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The communication efficiency factor ηcomm,i (see Table 3) as defined in Equation (8)
models real-world wireless signal degradation based on distance-dependent physics such
as the average station distance within the coverage area:

ηcomm,i = max
(

ηmin, 1− (dpenalty,i)
α
)

(8)

where ηmin = 0.5 establishes the minimum communication efficiency, and α = 1.5 controls
the degradation rate. A non-linear degradation function is employed (dpenalty,i)

α because
real-world wireless communication exhibits non-linear distance-dependent behavior rather
than simple linear degradation. Signal strength drops with distance squared according
to the inverse square law [38], packet loss increases exponentially as signal weakens [39],
and retransmission needs grow rapidly at communication limits [40]. The selection of
α = 1.5 represents a balance between mathematical realism and practical applicability
expecting wireless communication to be fairly robust at moderate distances but to degrade
more noticeably as sensors approach the limits of the coverage area, as α = 2 (quadratic
relationship) would create overly harsh efficiency drops that degrade too quickly with
distance, while α = 1 would produce unrealistic linear behavior that fails to capture the
exponential nature of wireless communication degradation. α = 1.5 provides moderate non-
linear degradation that aligns with empirical wireless behavior observed in drone-sensor
communication scenarios, offering a reasonable approximation of actual communication
physics without excessive computational complexity. 1 − (dpenalty,i)

α converts penalty
to efficiency (higher penalty = lower efficiency). max(ηmin, . . .) ensures minimum 50%
efficiency (worst case).

The distance penalty dpenalty,i (defined in Table 3) is calculated in Equation 9 as

dpenalty,i =
dratio,i − doptimal

1− doptimal
(9)

where dratio,i =
d̄i

rcoverage
represents the normalized average distance for AP i, and doptimal =

0.3 defines the optimal distance ratio (all variables defined in Table 3). This penalty
quantifies how far beyond the optimal distance ratio the sensors are positioned, with values
of 0 indicating optimal positioning and values approaching 1 representing maximum
deviation.

The mathematical reasoning behind Equation (9) centers on creating a penalty system
that appropriately scales sensor distribution effects on communication efficiency. The goal
is to convert the distance ratio, which ranges from 0 to 1, into a distance penalty that equals
0 when the distance ratio is at or below doptimal (0.3, the optimal zone), equals 1 when the
distance ratio reaches 1.0 (the coverage edge), and provides linear scaling between these
critical points.

The transformation process involves two essential mathematical steps. First, the origin
is shifted by subtracting 0.3 from the distance ratio (dratio,i − doptimal), which repositions
the coordinate system so that when the distance ratio equals 0.3, the penalty component
becomes zero, and when the distance ratio equals 1.0, the penalty component becomes
0.7. Second, this shifted value is scaled to fit the 0–1 range by dividing by 0.7, which is
calculated as 1− doptimal (1.0–0.3). This scaling ensures that when the penalty component
equals zero, the final result is 0 divided by 0.7, which equals 0, and when the penalty
component equals 0.7, the final result is 0.7 divided by 0.7, which equals 1. The specific
values used in this formula reflect the concept of usable range within the coverage area.
The total possible range spans from 0.0 to 1.0, representing the full coverage radius, while
the optimal range extends from 0.0 to 0.3, representing the no-penalty zone where sensors
operate with maximum communication efficiency. The penalty range covers 0.3 to 1.0,
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which is where graduated penalties are applied based on distance from the access point
center. The denominator value of 0.7, calculated as 1− doptimal (1.0–0.3), represents this
penalty-applicable range, essentially the portion of the coverage area where communication
efficiency begins to degrade and penalties become necessary.

Alternative approaches demonstrate why this specific formulation is necessary. A
simple linear approach using just the distance ratio would incorrectly apply penalties even
within the optimal zone from 0 to 0.3, while a simple shift subtracting 0.3 would produce
negative values and fail to properly scale the results. Incorrect scaling approaches would
maintain negative values and produce wrong scale ranges, failing to achieve the desired 0–1
penalty mapping that accurately reflects communication physics in drone-sensor scenarios.

This operational technique also identifies problematic access points that require spe-
cial attention during mission planning as defined in Equation (10). Access points with
quality scores qi < τprob are flagged, as these locations typically experience significant
communication challenges and extended collection times. The number of such problematic
APs within a flight plan is quantified as

Nproblematic =
NAP

∑
i=1

1 if qi < τprob

0 otherwise
(10)

where NAP denotes the total number of access points in the flight plan and τprob is a
problematic quality threshold of 0.5 based on the values of Table 2. This counts how many
access points have quality scores below the problematic threshold, which is used as a metric
for assessing the reliability and operational risk of the flight plan.

3.4.3. Composite Quality Index

While operational impact assessment provides crucial insights into individual AP
performance, mission planners require a unified metric that synthesizes multiple quality
dimensions into a single interpretable score. The complexity of modern drone operations
involves balancing numerous competing factors, including average performance, worst-
case scenarios, operational consistency, time efficiency, and system reliability. Individual
metrics, while valuable for detailed analysis, prove insufficient for holistic flight plan
evaluation and comparative assessment between alternative routing strategies.

The proposed composite quality index addresses this limitation by integrating five
distinct performance dimensions through a weighted aggregation technique. To simplify
the mathematical notation, let Q denote the composite quality score, and Q1 through Q5

represent the individual quality components as defined in Table 4.
Each component captures a specific aspect of flight plan quality, with weights as-

signed based on operational priority and impact on mission success. The mathematical
formulation, as defined in Equation (11), combines these factors as

Q =
5

∑
i=1

wi ·Qi (11)

The average quality component Q1 represents the arithmetic mean of individual AP
quality scores across the entire flight plan, providing insight into overall system perfor-
mance. This metric captures the baseline operational efficiency expected during normal
mission execution.

The worst-case quality component Q2 corresponds to the minimum quality score
encountered within the flight plan, highlighting potential operational bottlenecks. This
factor ensures that composite scores reflect the practical reality that mission performance
often depends on the weakest system component rather than average performance.
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Table 4. Mathematical notation for composite quality index defining all variables used in
Equations (11) through (14).

Symbol Type Definition

Q Quality score Unified composite quality metric (0–1 range)

w1, w2, w3, w4, w5 Weights Component importance weights (0.3, 0.2, 0.2,
0.2, 0.1)

Q1 Component Average quality: arithmetic mean of individ-
ual AP quality scores

Q2 Component Worst-case quality: minimum quality score in
flight plan

Q3 Component Consistency: quality variation based on stan-
dard deviation

Q4 Component Time efficiency: ratio of baseline to actual col-
lection times

Q5 Component Reliability: assessment based on problematic
AP detection

σquality Statistical measure Standard deviation of AP quality scores
across flight plan

Tbaseline Time (seconds) Optimal collection time under ideal condi-
tions

Textra Time (seconds) Additional time requirements due to quality
degradation

Nproblematic Integer count Number of APs with quality scores below
τprob

NAP Integer count Total number of Access Points in flight plan

τprob Threshold Problematic quality threshold (0.5)

The consistency component Q3, as defined in Equation (12), quantifies quality variation
across APs using standard deviation-based measures:

Q3 = 1−min(1, σquality) (12)

where σquality represents the standard deviation of AP quality scores. High consistency
indicates predictable operational conditions with σquality approaching zero, while significant
variation suggests uneven performance characteristics that complicate mission planning
and execution. The standard deviation provides an intuitive measure of quality spread,
expressed in the same units as the quality scores themselves.

The time efficiency component Q4, as defined in Equation (13), evaluates the relation-
ship between baseline collection time and quality-induced delays:

Q4 =
Tbaseline

Tbaseline + Textra
(13)

where Tbaseline represents the optimal collection time under ideal conditions and Textra

quantifies additional time requirements due to quality degradation.
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The reliability component Q5, as defined in Equation (14), provides assessment based
on problematic AP detection:

Q5 = e−2·
Nproblematic

NAP (14)

where Nproblematic denotes problematic APs as defined in Equation (10) and NAP denotes the
total number of access points in the flight plan. The -2 in the exponential function e−2·ratio

is the decay rate that controls how quickly reliability drops as problematic APs increase.
To determine the optimal exponent coefficient, analysis of how different values affect the
reliability scoring across varying scenarios of problematic access point proportions reveals
the impact of this parameter on assessment accuracy as depicted in Table 5.

Table 5. Effect of different exponent coefficients on reliability assessment.

Problematic % e−1·ratio e−2·ratio e−3·ratio Linear max(0, 1 − ratio)

0% 1.00 1.00 1.00 1.00
10% 0.90 0.82 0.74 0.90
25% 0.78 0.61 0.47 0.75
50% 0.61 0.37 0.22 0.50
75% 0.47 0.22 0.11 0.25
100% 0.37 0.14 0.05 0.00

A decay rate of −1 produces penalties that are too gentle, maintaining 90% reliability
even when 10% of access points are problematic, which may not adequately reflect the op-
erational risk. Conversely, a decay rate of −3 creates excessively harsh penalties, dropping
reliability to 74% with only 10% problematic access points, which could be unnecessarily
conservative for most operational scenarios.

The value of −2 provides realistic operational impact modeling by producing reliabil-
ity scores of 82% with 10% problematic access points, 61% with 25% problematic access
points, and 37% with 50% problematic access points. These values align well with prac-
tical expectations about how flight plan reliability should degrade as the proportion of
problematic access points increases.

The selection of the exponential approach with the exponent set to −2 reflects the
balance needed for standard operational contexts where reliability assessment should be
neither overly optimistic nor unnecessarily pessimistic. This decay rate ensures that small
numbers of problematic access points receive proportionate penalties without completely
undermining confidence in the flight plan, while still appropriately reflecting the increased
operational risk associated with higher proportions of problematic access points.

The weighting scheme prioritizes average quality (w1 = 0.3) as the primary performance
indicator, followed by time efficiency (w4 = 0.2) and worst-case performance (w2 = 0.2) as
secondary factors. Consistency (w3 = 0.2) and reliability (w5 = 0.1) provide additional nuance
to the composite assessment while maintaining focus on operational outcomes.

This composite technique enables direct comparison between alternative flight plans
and provides mission planners with a unified metric for evaluating overall operational
effectiveness. The resulting scores range from 0 to 1 (Table 6), with higher values indicating
superior operational characteristics and improved mission efficiency. By consolidating
multiple performance dimensions into a single interpretable value, the composite quality
index facilitates the systematic evaluation of different access point configurations and
routing strategies, allowing operators to make informed decisions about flight plan selection
based on comprehensive quality assessment rather than individual metric optimization.
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Table 6. Impact of composite score on flight plan quality and collection time.

Composite Score Flight Plan Quality Expected Impact

0.8–1.0 Excellent Minimal extra time
0.6–0.8 Good +10–20% collection time
0.4–0.6 Fair +20–40% collection time
0.2–0.4 Poor +40% + collection time
0.0–0.2 Very Poor Significant delays

3.4.4. Quality-Based Post-Processing Enhancement

While the composite quality index provides a comprehensive technique for evaluating
flight plan effectiveness, the practical application of ILP-based access point placement
reveals inherent limitations that can significantly impact operational efficiency. To demon-
strate these challenges and their resolution, an examination of the example configuration
presented in Figure 6 is conducted, which illustrates an 11-station deployment scenario
processed through our two-phase optimization approach.
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Figure 6. Enhancing station selection for APs. (a) 11 sensor stations in a field. (b) Applying ILP on
(a) for AP placement. (c) Same as (b) to show clearly the station allocation in each AP. (d) Enhanced
station selection for each AP.

Figure 6a presents the initial distribution of 11 sensor stations across the operational
area. Following ILP optimization for access point placement, Figure 6b displays the
resulting four access points with their associated coverage areas. Figure 6c reproduces the
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same configuration using color coding to clearly delineate the access point assignments
and their respective station allocations. Upon closer examination of this ILP-generated
solution in Figure 6d, a critical operational challenge becomes apparent regarding station-
to-access-point assignments.

The ILP formulation, while successfully minimizing the total number of access points,
does not guarantee optimal station-to-AP assignments from a communication efficiency
perspective. Stations may be assigned to access points that satisfy coverage constraints but
are not necessarily the nearest available option. This phenomenon occurs because the ILP
objective function prioritizes minimizing access point count over optimizing individual
station assignment distances. Consequently, some stations operate closer to the communi-
cation range limits of their assigned access points rather than benefiting from proximity to
potentially closer alternatives.

Applying the quality assessment (Equation (11)) to the ILP-generated configuration
reveals the operational impact of these suboptimal assignments (Figure 6c, Table 7). The
analysis yields a composite quality score of 0.62, indicating fair operational performance
with room for significant improvement. More critically, the predicted extra hover time
reaches 11.66 s, representing substantial operational overhead that directly impacts mission
efficiency and energy consumption.

Table 7. Access point quality and associated stations for Figure 6c.

Access Point Quality Station(X, Y)

AP1 1 S64(299, 133)

AP2 0.35 S11(479, 151), S60(419, 51), S68(320, 83), S76(306, 117),
S85(400, 101)

AP3 0.64 S16(524, 175), S92(500, 125)

AP4 0.51 S30(438, 248), S42(450, 171), S61(447, 286)

The detailed access point analysis exposes considerable quality variation across the
four AP locations. AP1 achieves perfect quality (1.00) due to its single assigned station,
while AP2 demonstrates poor performance (0.35) resulting from four stations distributed
across varying distances from the access point center. AP3 and AP4 exhibit moderate
quality scores of 0.64 and 0.51, respectively, indicating mixed operational characteristics
that contribute to the overall system inefficiency.

This quality degradation stems directly from the ILP constraint structure, which
ensures coverage and minimizes access point count but does not incorporate distance
optimization in station assignments. While the ILP solution successfully maintains the
minimum number of access points required for complete coverage, the resulting station dis-
tribution patterns create communication challenges that translate into extended collection
times and reduced operational efficiency.

To address this limitation, an approach is proposed that involves post-processing
the ILP-generated access point locations to reassign stations to their nearest available
access points while preserving the optimal access point count achieved through integer
programming. Algorithm 2 implements this enhancement strategy by maintaining the
ILP-determined access point positions but redistributing station assignments based on
proximity criteria rather than the original ILP assignment constraints.
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Algorithm 2 Assign sensor station locations to the nearest access point.

Require: List of station coordinates S = {s1, s2, . . . , sn}, list of access point centers
C = {c1, c2, . . . , ck}, coverage radius r

Ensure: List of access points, each with a center and its assigned stations
1: Initialize empty mapM← ∅ ▷ center→ access point
2: for all c ∈ C do
3: M[c]← new access point with center c and radius r
4: end for
5: for all s ∈ S do
6: Ns ← {c ∈ C | distance(s, c) ≤ r} ▷ Valid centers within radius
7: if Ns ̸= ∅ then
8: c∗ ← arg minc∈Ns distance(s, c) ▷ Nearest center
9: Add s toM[c∗]

10: end if
11: end for
12: A← list of access points inM return A

The post-processing algorithm iterates through all station locations, calculating dis-
tances to each available access point within communication range, and assigns each station
to the nearest feasible option. This approach preserves the fundamental optimization
achievement of minimizing access point count while improving the geometric distribution
of stations around their respective collection points.

Reapplying the quality assessment metrics (Equation (11)) following Algorithm 2 post-
processing demonstrates substantial operational improvements (Figure 6d, Table 8). The
composite quality score increases from 0.62 to 0.76, representing a significant enhancement
in overall flight plan effectiveness. More importantly, the predicted extra hover time
decreases from 11.66 s to 5.77 s, achieving a 50% reduction in operational overhead through
improved station-to-access-point assignments.

Table 8. Access point quality and associated stations for Figure 6d.

Access Point Quality Station(X, Y)

AP1 0.67 S64(299, 133), S68(320, 83), S76(306, 117)

AP2 0.65 S60(419, 51), S85(400, 101)

AP3 0.51 S11(479, 151), S16(524, 175), S42(450, 171), S92(500, 125)

AP4 0.75 S30(438, 248), S61(447, 286)

The redistributed access point analysis reveals more balanced quality characteristics
across all four AP locations. AP1 maintains reasonable performance (0.67) with three
well-distributed stations, while AP2 achieves similar effectiveness (0.65) with its two
assigned stations. AP3 accommodates four stations with moderate quality (0.51), and
AP4 demonstrates good performance (0.75) with its two assigned stations. This more
uniform quality distribution contributes to improved operational predictability and reduced
mission complexity.

The post-processing approach effectively addresses the limitation inherent in pure
ILP formulations while maintaining the fundamental optimization objective of minimizing
access point count. By decoupling the access point placement problem from the station
assignment optimization, this two-stage approach achieves superior operational charac-
teristics without compromising the mathematical guarantees provided by integer linear
programming for coverage and access point minimization.
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4. Experimental Evaluation
4.1. Setup

To model the access point selection as an ILP problem, the mTSP framework was
adapted from our prior research [41,42], and Google OR-Tools [43] was leveraged to simplify
the implementation of ILP-based solutions. The code was developed in C# using the .NET
framework. All tests were conducted on a high-performance system with the following
specifications: 512 GB of RAM, an AMD® Ryzen Threadripper Pro 5955WX (AMD, Santa
Clara, CA, USA) processor (16 cores, 32 threads, 4.0 GHz base clock), and four NVIDIA
RTX A5000 GA102GL GPUs (NVIDIA, Santa Clara, CA, USA).

A total of 80 distinct flight plans, each representing a different scenario, were generated.
These scenarios explored a range of station densities, specifically 5, 10, 15, 20, 25, 45, 60, and
100 stations, while accommodating varying drone counts from 1 to 10. The stations were
randomly created using a uniform random distribution. To mitigate potential statistical
variations arising from randomized station locations, for each scenario, 10 copies were
created using the same number of stations and drones but different station locations,
producing 800 total scenarios (80 scenarios × 10 copies). The results were averaged for each
scenario to ensure statistical reliability.

4.2. Evaluation Results

To assess the effectiveness of this approach, two key metrics were used:

• Performance Improvement: Let D0 denote the original mTSP distance when visiting
all stations directly, and DAP denote the mTSP distance when using the access point
approach. As defined in Equation (15), the performance improvement P measures
the gains achieved (in percentage) by the two-phase method compared to using
mTSP alone. More specifically, it represents the percentage reduction in the total
distance that drones need to travel when using access points instead of visiting every
station individually:

P = 1− DAP
D0

(15)

• Sparsity Ratio: Let NAP denote the number of access points and NS denote the number
of stations. As defined in Equation (16), the sparsity ratio S indicates how efficiently
access points are distributed relative to the number of stations. A ratio near to 1
suggests one access point per station, while a lower ratio implies shared access points
among multiple stations. Essentially it captures how “dense” or “sparse” the access
point deployment is relative to the full set of stations:

S =
NAP
NS

(16)

The results obtained from the tests, as depicted in Figure 7, demonstrate a clear
trend that aligns well with the theoretical expectations described herein on the two-phase
optimization approach involving ILP and mTSP.

4.2.1. Performance Analysis

The performance metric, in percentage, shows consistent improvement across all
tested scenarios.

The performance advantage increases substantially with network size. For small
networks with 5–25 stations, the improvement ranges from 3 to 7%. However, for larger
networks with 45–100 stations, the improvement jumps significantly to 16–32%.
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The most dramatic performance gain occurs in the largest tested network of 100 sta-
tions, where the two-phase approach reduces travel distance by nearly one-third (32%)
compared to the direct mTSP approach.
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Figure 7. Distance performance by applying ILP for APs first and then mTSP.

4.2.2. Sparsity Analysis

The sparsity metric reveals important insights about the efficiency of the ILP phase.
The sparsity decreases steadily as the number of stations increases, from 0.9 for 5 stations to
0.3 for 100 stations. This indicates that the clustering advantage becomes more pronounced
in larger networks.

In small networks with 5 stations, nearly all stations serve as access points (sparsity =
0.9), offering minimal clustering benefit. However, in the largest network with 100 stations,
only 30% of stations need to serve as access points.

The inverse relationship between sparsity and performance improvement confirms the
paper’s intuition: as more stations can be clustered under fewer access points, the efficiency
gain of the two-phase approach increases.

4.2.3. Statistical Significance Analysis

To verify the statistical significance of the performance improvements, a Wilcoxon
signed-rank test [44] is conducted across all 80 scenarios. The Wilcoxon test is selected
as an appropriate non-parametric statistical method for this analysis because it does
not assume normality in the data distribution, making it well-suited for comparing
the paired observations of the two approaches (traditional mTSP versus our two-phase
ILP + mTSP methodology).

The test yields a test statistic value of 3100.0 with a one-tailed p-value of 6.306× 10−13

(N = 80). This extremely small p-value, orders of magnitude below the conventional
threshold of 0.05, provides compelling evidence against the null hypothesis that the two
approaches perform equally well. The magnitude of this result confirms that the distance
reductions observed when implementing our two-phase optimization strategy represent
genuine improvements rather than random variations.

The strength of this statistical evidence corresponds well with the pattern observed
in Figure 7, where performance improvements become increasingly substantial as net-
work complexity grows. The Wilcoxon test results validate our approach across the full
spectrum of tested configurations, from small networks with minimal gains to large-scale
deployments where the advantages become most pronounced.
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This statistical confirmation is particularly valuable given the practical implications
for drone battery life and operational efficiency in real-world applications. The significant
p-value underscores the robustness of our approach and its potential value for implementa-
tion in various WSN data collection scenarios where resource optimization is critical.

4.2.4. Quality-Based Post-Processing Analysis

To validate the effectiveness of the quality-based post-processing enhancement
(Section 3.4.4) across different network configurations, another experimental evaluation
was conducted using the same testing framework described in Section 4.1. This system-
atic analysis (1600 additional tests) compares the composite quality scores (Equation (11))
achieved by the standard ILP approach against the enhanced ILP with post-processing
assignment methodology across varying station densities ranging from 5 to 100 as shown
in Figure 8.
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Figure 8. Composite quality scores by standard ILP approach against ILP with post-processing
assignment to nearest AP center.

The comparative results demonstrate consistent improvements in composite quality
scores when applying the post-processing assignment strategy. For smaller networks with
five stations, both approaches achieve nearly identical performance, indicating that the
ILP solution already produces near-optimal sensor assignments when the ratio of access
points to stations is high, leaving minimal opportunity for post-processing improvements.
However, as network complexity increases, the advantages of post-processing become in-
creasingly pronounced. Medium-scale deployments with 25 to 45 stations show modest but
consistent improvements. The most significant enhancements occur in large-scale networks
where the original ILP approach demonstrates greater susceptibility to suboptimal station
assignments. Networks with 100 stations exhibit quality improvements from 0.63 to 0.64,
representing nearly a 2% enhancement in operational effectiveness through reassignment
optimization alone.

4.3. Solidifying the Results

While the post-processing enhancement demonstrates modest improvements in op-
erational quality, a comprehensive evaluation requires comparison against alternative
clustering methodologies to validate the effectiveness of the ILP-based approach. The
selection of access point placement algorithms fundamentally impacts both the number
of collection points required and the resulting operational characteristics of drone-based
data collection missions. To establish the relative merits of the proposed ILP methodol-
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ogy, extensive comparative analysis was conducted against six established clustering and
coverage algorithms commonly employed in wireless sensor network optimization.

The comparative study evaluates seven distinct approaches across identical experi-
mental conditions.

• ILP provides mathematically optimal solutions by formulating access point placement
as a constraint satisfaction problem that minimizes the number of coverage points
while ensuring complete sensor coverage.

• Voronoi diagrams [45,46] creates natural clustering boundaries based on spatial prox-
imity. It identifies which sensors are naturally grouped together based on their relative
distances, then places access points to serve these spatially coherent clusters.

• Constrained K-Means [47,48] clustering adapts the traditional K-Means approach to
incorporate coverage radius constraints, iteratively refining cluster centers to minimize
within-cluster sensor distances while maintaining coverage requirements.

• DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [49,50] iden-
tifies clusters based on sensor density patterns, automatically determining cluster
boundaries and handling outlier sensors that may require individual access points.

• Graph-Based [51] clustering constructs connectivity graphs among sensors and applies
graph partitioning algorithms to identify cohesive sensor groups, often producing
high-quality clusters at the expense of additional access points.

• Greedy Circle Packing [52,53] algorithms employ iterative heuristics to place coverage
circles, prioritizing areas with high sensor density and expanding coverage until all
sensors are encompassed.

These methodologies represent fundamentally different approaches to spatial opti-
mization, ranging from exact mathematical formulations to approximate heuristics de-
signed for computational efficiency in large-scale deployments.

Using the experimental framework established in Section 4.1, 800 test scenarios were
generated across varying sensor stations from 5 to 100, with identical hardware specifica-
tions and statistical averaging protocols being maintained for all algorithmic comparisons.
To ensure fairness, all algorithms utilized the post-processing optimization technique de-
tailed in Section 3.4.4. That resulted in 5600 additional test runs. This comprehensive
evaluation examined four critical performance dimensions: access point count minimiza-
tion, total flight distance optimization, mission time efficiency, and composite quality scores
as developed in our quality assessment in Sections 3.4.1–3.4.3.

The results are presented in paired visualizations (Figures 9–12) where subfigure (a)
displays the absolute performance values for each algorithm across varying network sizes,
while subfigure (b) shows the percentage differences relative to ILP performance. This
dual presentation approach was adopted to address the visual overlap inherent in com-
paring seven different algorithms simultaneously, ensuring that performance variations
between methods remain clearly distinguishable across all tested scenarios. The percent-
age difference analysis in subfigure (b) facilitates direct quantitative comparison of each
algorithm’s efficiency relative to the ILP benchmark, with the X-axis representing ILP as
the baseline reference point. Values plotted above the X-axis indicate that ILP outperforms
the corresponding algorithm by the displayed percentage, while values below the X-axis
would indicate superior performance by the alternative method. This visualization frame-
work highlights both the magnitude and consistency of performance gaps across different
network configurations, demonstrating the competitive advantage of ILP across multiple
operational dimensions.
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Figure 9. (a) Number of access points created by each algorithm. (b) Percentage difference of AP
count from ILP (X-axis).

The access point generation analysis reveals substantial differences in clustering
efficiency across algorithms. ILP consistently achieves the minimum or near-minimum
number of access points required for complete coverage, demonstrating its mathematical
optimality for the coverage minimization objective. Constrained K-Means exhibits the
poorest performance in this dimension, generating significantly more access points than
necessary, particularly in larger networks where it creates 76 access points for 100 stations
compared to the optimal 28 of ILP. This poor performance stems from K-Means’ tendency
to create uniform cluster sizes regardless of spatial sensor distribution, often subdividing
naturally cohesive sensor groups. Graph-Based clustering also demonstrates suboptimal
access point utilization, requiring 69 access points for the same 100-station scenario, as
its focus on connectivity optimization often produces numerous small, highly connected
clusters. Voronoi and the DBSCAN approaches achieve performance comparable to ILP in
smaller networks but show slight degradation in larger deployments, with the DBSCAN
density-based approach occasionally creating fragmented clusters in sparse regions. In
other words, DBSCAN splits up sensors that should logically be served by one access point
into multiple tiny clusters, each requiring its own AP, leading to inefficient access point
placement.
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Figure 10. (a) Total flight distance by each algorithm. (b) Percentage difference of flight distance from
ILP (X-axis).

The flight distance analysis demonstrates the direct operational impact of access
point optimization effectiveness. ILP achieves the shortest or near-shortest total flight
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distances across all network configurations, with particularly pronounced advantages in
large-scale deployments. For 100-station networks, ILP generates flight plans requiring
7718 distance units compared to Constrained K-Means’ 10,175 units, representing a 24%
improvement in travel efficiency. The baseline “No Clustering” comparison against direct
sensor visitation without access point clustering reveals substantial benefits for all clustering
approaches, with ILP achieving 32% distance reduction compared to the unclustered
baseline of 11,354 units.
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Figure 11. (a) Total flight time (airtime) by each algorithm. (b) Percentage difference of flight time
from ILP (X-axis).

Mission time efficiency follows similar patterns to flight distance optimization, with
ILP consistently achieving the shortest or near-shortest mission durations. To calculate flight
time from distances, it is assumed that a typical drone operates at a speed of 32.4 km/h,
which represents typical operational velocities for commercial UAVs in data collection
scenarios. The time savings become increasingly significant as network complexity grows,
with ILP requiring 16 min for 100-station missions compared to Constrained K-Means’
18.9 min. Most notably, ILP demonstrates a substantial 38% improvement over the baseline
“No Clustering” approach, which requires 26 min for the same 100-station deployment.
These improvements translate directly into enhanced battery life utilization and increased
operational range for drone-based collection systems.
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Figure 12. (a) Flight plan quality based on the access points generated by each algorithm. (b) Percent-
age difference of quality from ILP (X-axis).

The composite quality assessment reveals the effectiveness of ILP in generating oper-
ationally efficient access point configurations. While Constrained K-Means achieves the
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highest individual quality scores due to its tendency to create numerous small clusters with
minimal sensor dispersion; this advantage comes at the significant cost of dramatically
increased access point count and corresponding flight overhead. ILP maintains competitive
quality scores while achieving superior efficiency in access point utilization, representing
an optimal balance between collection efficiency and routing optimization.

Graph-Based clustering demonstrates consistently superior quality scores compared
to other algorithms while maintaining reasonable access point counts, suggesting potential
for hybrid approaches that combine the mathematical optimality of ILP with graph-based
quality enhancement techniques. However, the increased access point count required
by Graph-Based methods ultimately results in longer flight times that offset the quality
advantages in practical mission scenarios.

While ILP consistently demonstrates superior performance across operational metrics,
computational efficiency represents a critical consideration for real-world deployment sce-
narios. The mathematical optimality guarantees provided by integer linear programming
come at the cost of increased computational complexity, particularly as network size grows.
Figure 13 presents a comprehensive analysis of computational time requirements across all
evaluated algorithms, measured in seconds for varying network configurations.
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Figure 13. Computational time (runtime) comparison across clustering algorithms.

The computational analysis reveals distinct performance characteristics across algorith-
mic approaches. Graph-Based clustering demonstrates the most favorable computational
efficiency, requiring only 0.003 s for the largest tested network. Conversely, ILP and Con-
strained K-Means exhibit significantly higher computational overhead, particularly in
large-scale deployments. For 100-station networks, ILP requires approximately 0.127 s
while Constrained K-Means demands 0.354 s. The exponential growth in computational
requirements for Constrained K-Means reflects its iterative optimization process and sensi-
tivity to initialization parameters, while the ILP computational cost grows more moderately
due to its systematic constraint satisfaction approach.

Despite the higher computational cost of ILP relative to heuristic methods, several
factors mitigate this limitation in practical applications. First, access point optimization
represents a strategic planning phase typically executed offline rather than in real-time op-
erational contexts. The computational investment of 0.127 s for 100-station networks yields
mathematically optimal solutions that provide long-term operational benefits through
minimized energy consumption and extended mission capabilities.

Second, the absolute computational times remain highly manageable for most practical
deployment scenarios. Even the largest tested configuration completes optimization within
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a fraction of a second, making ILP suitable for deployment planning, periodic reconfigu-
ration, and scenario analysis applications where solution optimality justifies the modest
computational overhead.

For applications requiring real-time reconfiguration or extremely large-scale networks,
hybrid approaches combining fast heuristic methods for initial placement with ILP-based
refinement for critical regions may provide optimal balance between computational effi-
ciency and solution quality. The modular nature of our two-phase framework facilitates
such adaptive implementations where algorithmic selection can be dynamically adjusted
based on operational constraints and performance requirements. The computational ef-
ficiency analysis reinforces the practical viability of ILP while highlighting alternative
approaches for time-critical applications where near-optimal solutions suffice.

4.4. Comprehensive Performance Summary

To facilitate practical algorithm selection, Table 9 consolidates the performance metrics
across all evaluated approaches and network configurations. This comprehensive comparison
enables practitioners to assess the trade-offs between computational efficiency, operational
performance, and resource requirements based on their specific deployment constraints.

Table 9. Comprehensive performance comparison across all approaches and network configurations.
Bold values indicate best performance in each category.

Stations Metric ILP Voronoi Constrained
K-Means DBSCAN Graph-Based Greedy Circle

Packing
No
Clustering

5

Distance 3016.4 3016.4 3062.1 3016.4 3016.6 2959.4 3159.6
Airtime 5.6 5.6 5.7 5.6 5.6 5.5 6.1
APs 5 5 5 5 5 4 -
Quality 0.9 0.9 1.0 0.9 0.9 0.9 -
Runtime 0.0078 0.0003 0.0005 0.0005 0.0000 0.0001 -

10

Distance 4579.9 4583.9 4696.6 4577.8 4598.2 4558.8 4746.7
Airtime 8.5 8.5 8.7 8.5 8.5 8.5 9.3
APs 8 8 10 8 9 8 -
Quality 0.8 0.8 1.0 0.8 0.9 0.8 -
Runtime 0.0072 0.0004 0.0008 0.0004 0.0002 0.0002 -

15

Distance 5109.1 5109.1 5430.5 5102.5 5187.8 5075.9 5567.0
Airtime 9.5 9.5 10.1 9.5 9.7 9.5 11.1
APs 12 12 14 12 12 11 -
Quality 0.8 0.8 1.0 0.8 0.8 0.8 -
Runtime 0.0107 0.0008 0.0016 0.0013 0.0001 0.0002 -

20

Distance 5898.8 5907.1 6296.1 5894.2 6067.3 5911.3 6397.9
Airtime 11.1 11.1 11.7 11.1 11.3 11.1 12.8
APs 14 14 18 14 16 14 -
Quality 0.8 0.8 0.9 0.8 0.8 0.8 -
Runtime 0.0138 0.0009 0.0043 0.0004 0.0001 0.0006 -

25

Distance 6085.6 6032.5 6399.9 6042.6 6323.9 6025.9 6511.4
Airtime 11.5 11.4 11.9 11.4 11.8 11.4 13.3
APs 16 16 22 16 20 16 -
Quality 0.7 0.7 0.9 0.7 0.8 0.7 -
Runtime 0.0185 0.0010 0.0068 0.0004 0.0002 0.0019 -

45

Distance 6941.6 7028.5 7850.2 6963.5 7604.3 7032.6 8254.8
Airtime 13.4 13.5 14.6 13.4 14.3 13.6 17.5
APs 22 23 36 22 34 23 -
Quality 0.7 0.7 0.9 0.7 0.8 0.7 -
Runtime 0.0349 0.0040 0.0374 0.0007 0.0006 0.0030 -
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Table 9. Cont.

Stations Metric ILP Voronoi Constrained
K-Means DBSCAN Graph-Based Greedy Circle

Packing
No
Clustering

60

Distance 7267.0 7327.9 8544.1 7255.3 8354.7 7317.9 9138.1
Airtime 14.3 14.3 15.9 14.3 15.8 14.4 19.9
APs 25 26 48 25 44 25 -
Quality 0.6 0.7 0.9 0.6 0.8 0.6 -
Runtime 0.0446 0.0056 0.0892 0.0010 0.0014 0.0048 -

100

Distance 7717.9 7792.5 10174.9 7686.5 9807.5 7781.7 11353.8
Airtime 16.0 16.0 18.9 15.9 18.7 16.0 26.0
APs 28 31 76 30 69 30 -
Quality 0.6 0.6 0.9 0.6 0.8 0.6 -
Runtime 0.1271 0.0120 0.3537 0.0032 0.0031 0.0119 -

The consolidated results reveal several key performance patterns across the evaluated
methodologies. In terms of access point efficiency, ILP demonstrates consistent optimization
by achieving the minimum or near-minimum number of access points across all network
sizes. This superior coverage optimization becomes particularly evident in large-scale de-
ployments, where ILP requires only 28 access points for 100-station networks compared to
Constrained K-Means’ excessive requirement of 76 access points for the same configuration.

Flight performance analysis shows ILP delivering competitive distances and mission
times across all tested configurations, with pronounced advantages in larger network
deployments. The baseline “No Clustering” approach consistently exhibits significantly
higher operational costs, validating the fundamental effectiveness of clustering-based
methodologies for drone data collection optimization.

Quality assessment results indicate that while Constrained K-Means achieves the highest
composite quality scores, this performance comes at the substantial cost of excessive access
point proliferation. ILP maintains reasonable quality characteristics while prioritizing the
primary optimization objective of minimizing collection infrastructure requirements.

Computational performance varies significantly across approaches, with Graph-Based
and Voronoi methods demonstrating superior execution speed. Constrained K-Means
exhibits exponential computational growth that limits its scalability for large network de-
ployments. Despite higher computational overhead compared to heuristic approaches, the
ILP execution times remain highly manageable for practical deployment scenarios, with op-
timization completing within fractions of a second even for the largest tested configurations.

These consolidated findings reinforce the effectiveness of ILP-based access point se-
lection for drone data collection optimization. ILP consistently achieves the fundamental
objective of minimizing access point count while maintaining competitive or superior
performance across operational metrics. The mathematical optimality guarantees provided
by integer linear programming ensure reliable performance across diverse network con-
figurations, making ILP the preferred approach for mission-critical applications where
efficiency and predictability are paramount.

This comprehensive evidence strengthens our foundational premise that ILP-based
clustering provides the optimal foundation for the two-phase optimization strategy, effec-
tively balancing the competing objectives of coverage minimization, routing efficiency, and
operational quality in drone-based wireless sensor network data collection scenarios.

Benchmark Selection Justification

The comparative evaluation employs six established clustering algorithms that repre-
sent the primary algorithmic families used for access point placement in WSN scenarios.
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Our benchmark selection was guided by several strategic considerations that ensure com-
prehensive and fair evaluation while addressing the unique constraints of drone-based
data collection systems. These are as follows.

Algorithmic Diversity: The selected methods encompass the major categories of
clustering approaches used in WSN applications. They are as follows: geometric-based
clustering (Voronoi tessellation), density-based clustering (DBSCAN), centroid-based clus-
tering (K-Means variants), constrained optimization (Constrained K-Means), graph-based
methods (Graph-Based clustering), and geometric packing (Greedy Circle Packing). This di-
versity ensures comprehensive evaluation across different algorithmic paradigms, ranging
from exact mathematical formulations to approximate heuristics designed for computa-
tional efficiency in large-scale deployments.

Metaheuristic Method Limitations: While metaheuristic approaches such as genetic
algorithms, particle swarm optimization, and simulated annealing are widely used in
optimization problems, they face fundamental limitations when applied to our specific
problem formulation. These methods typically lack convergence guarantees and require
extensive parameter tuning, making them unsuitable for mission-critical drone deployment
scenarios where reliability and predictability are paramount. Moreover, metaheuristic
approaches cannot provide the mathematical optimality guarantees essential for strate-
gic access point placement decisions that influence long-term operational efficiency and
mission success rates.

Absence of Comparable Hybrid Methods: Our enhanced literature review, including
recent bilevel optimization approaches [7,20] and energy-efficient clustering strategies [8,9],
confirms that no existing work combines ILP for access point placement with mTSP for
multi-drone routing in WSN data collection scenarios. Recent metaheuristic approaches
either employ heuristic algorithms rather than mathematical optimization or focus on
ground-based routing without aerial coordination considerations. The bilevel optimization
framework by Han et al. [7], while innovative, relies on heuristic methods (improved
dandelion algorithm and iterated greedy algorithm) that lack mathematical optimality
guarantees and does not address multi-drone coordination requirements inherent in large-
scale WSN deployments.

Domain-Specific Constraint Considerations: The unique operational requirements
of drone-based WSN data collection introduce constraints that distinguish our problem
from traditional clustering scenarios. Unlike ground-based systems where cluster heads
are existing network nodes, our access points represent physical locations that drones
must visit and hover at for extended periods. This fundamental difference invalidates
many established benchmarks from related domains, as traditional clustering algorithms
lack consideration for physical coverage constraints, communication range limitations,
flight energy consumption patterns, and the geometric complexities of hovering data
collection missions.

Computational Optimality Requirements: The selection of exact algorithms over
metaheuristic approaches reflects the strategic planning nature of access point deployment,
where mathematical optimality guarantees provide significant value. Unlike real-time
operational scenarios, AP placement represents a one-time strategic decision that influences
long-term operational efficiency. The modest computational overhead of ILP (under 0.13 s
for 100-station networks as demonstrated in Figure 13) provides mathematically optimal
solutions that eliminate the uncertainty associated with metaheuristic approaches.

Standardized Problem Formulation: The selected algorithms address the identical
optimization challenge—minimizing the number of collection points while ensuring com-
plete sensor coverage. This enables fair performance evaluation where improvements
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can be attributed to our methodological innovations rather than differences in problem
assumptions or objectives.

Established WSN Baselines: These methods represent the state-of-the-art baselines
consistently used in WSN clustering evaluation, providing standardized comparison points
that contextualize our results within the broader WSN optimization literature [45–53]. The
selected algorithms have been extensively validated in WSN applications and provide reli-
able performance benchmarks that enable meaningful comparison with our ILP-based ap-
proach.

5. Conclusions
Our research demonstrates that combining ILP and mTSP creates a powerful frame-

work for drone-based data collection in wireless sensor networks. The two-phase ap-
proach—using ILP for strategic access point placement first, then applying mTSP for flight
path optimization—offers significant advantages over single-stage methods.

Breaking complex problems into sequential stages dramatically reduces computational
demands in large-scale deployments. Our tests reveal that this clustered approach not only
improves scalability but also extends drone battery life through more efficient routing. The
framework effectively balances energy constraints with operational requirements.

Comparative evaluation against six established clustering algorithms validates the
superiority of ILP-based access point selection. While alternatives like Voronoi tessellation
and Graph-Based clustering show merit in specific scenarios, ILP consistently achieves
optimal access point minimization while maintaining competitive operational quality.
The mathematical guarantees provided by integer linear programming ensure reliable
performance across diverse network configurations.

The quality assessment framework introduced in this work provides practitioners
with tools for evaluating operational effectiveness beyond simple distance metrics. Our
post-processing enhancement technique addresses the inherent limitations in pure ILP
formulations, showing consistent but modest improvements in composite quality scores
across all tested scenarios through optimized sensor assignments.

These methodologies have broad applications beyond academic interest. Environ-
mental monitoring programs, emergency response coordination, and commercial delivery
systems can all benefit from the efficiency gains observed herein.

Future research directions might explore dynamic reconfiguration mechanisms that
adapt both access point placement and flight paths in real-time. Incorporating predictive opti-
mization through machine learning techniques could further enhance system performance.

Investigating recently developed clustering algorithms also represents a promising
avenue for performance improvements. Density-center-based automatic clustering algo-
rithms [54], which identify cluster centers based on local density peaks, may offer enhanced
access point selection by naturally detecting optimal aggregation points in sensor net-
works. Similarly, multi-view dynamic kernelized evidential clustering approaches [55],
which leverage multiple data perspectives and uncertainty modeling, could provide more
robust access point configurations that account for varying operational conditions and
environmental uncertainties. Integrating these advanced clustering methodologies with
our ILP-based optimization framework merits future investigation.

Future work will also incorporate explicit battery constraints and detailed energy con-
sumption models for specific drone platforms. While the current framework optimizes energy
efficiency through reduced travel distances, integrating realistic energy models that account
for battery capacity, power consumption during different flight phases, and environmental
factors would enable more precise mission planning and optimal fleet composition.
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Furthermore, the current model assumes isotropic communication within a fixed
radius and perfect knowledge of sensor and drone locations, which may not hold in
complex real-world environments. Future work should address two critical extensions to
enhance practical applicability.

First, environments with obstacles or directional transmission limitations require
obstacle-aware coverage constraints. The ILP formulation can be extended by redefin-
ing the binary variable covers[s, ap] (Algorithm 1) to account for line-of-sight (LOS) [56]
conditions between sensors and access points. Additionally, candidate AP locations can
be preprocessed to exclude infeasible positions such as those inside obstacles or without
sufficient clearance, ensuring that AP placements are both coverage-optimal and physically
realizable in complex terrains.

Second, positional uncertainty from GPS inaccuracies, environmental drift, or dynamic
obstacles necessitates robust optimization extensions [57]. The ILP phase could incorporate
coverage constraints that ensure robustness under worst-case deviations within uncertainty
bounds for sensor and AP positions. Alternatively, stochastic programming approaches
could model uncertain parameters via probability distributions to maximize expected
coverage or minimize coverage failure risk. Similarly, the mTSP phase could optimize
drone routes to remain feasible under location uncertainties by incorporating buffer zones
or robust tour constraints.

These extensions will enhance the framework’s applicability in uncertain and ob-
structed environments while maintaining the fundamental advantages of the two-phase
optimization approach.

With Internet of Things ecosystems rapidly expanding, these sophisticated optimiza-
tion approaches will become increasingly vital for building sustainable data collection
infrastructures capable of addressing future challenges.
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